Online accelerator optimization with a machine learning-based stochastic algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SMART STOCHASTIC ALGORITHM FOR NONCONVEX OPTIMIZATION A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm, were designed to mitigate the effects of such contaminated data, but they are limited to the regression context. In t...

متن کامل

Stochastic Optimization for Machine Learning

It has been found that stochastic algorithms often find good solutions much more rapidly than inherently-batch approaches. Indeed, a very useful rule of thumb is that often, when solving a machine learning problem, an iterative technique which relies on performing a very large number of relatively-inexpensive updates will often outperform one which performs a smaller number of much "smarter" bu...

متن کامل

A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

In this paper, we show how to transform any optimization problem that arises from fitting a machine learning model into one that (1) detects and removes contaminated data from the training set while (2) simultaneously fitting the trimmed model on the uncontaminated data that remains. To solve the resulting nonconvex optimization problem, we introduce a fast stochastic proximal-gradient algorith...

متن کامل

Stochastic Methods For Optimization and Machine Learning

In this project a stochastic method for general purpose optimization and machine learning is described. The method is derived from basic information-theoretic principles and generalizes the popular Cross Entropy method. The effectiveness of the method as a tool for statistical modeling and Monte Carlo simulation is demonstrated with an application to the problems of density estimation and data ...

متن کامل

Using Machine Learning to Improve Stochastic Optimization

In many stochastic optimization algorithms there is a hyperparameter that controls how the next sampling distribution is determined from the current data set of samples of the objective function. This hyperparameter controls the exploration/exploitation trade-off of the next sample. Typically heuristic “rules of thumb” are used to set that hyperparameter, e.g., a pre-fixed annealing schedule. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning: Science and Technology

سال: 2020

ISSN: 2632-2153

DOI: 10.1088/2632-2153/abc81e